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ABSTRACT

Given a supply of N weapons and a time T in which to operate,
what is the best way to allocate the weapons among incoming targets
arriving with average rate X so as to maximize the expected number
of targets killed? This problem leads to a system of ordinary dif-
ferential equations which can be solved recursively, and whose solutions
furnish the values of the expected number of targets killed, as well
as the optimal firing schedule.

(REVERSE BIK)
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Suppose that we are given N missiles which we can fire singly or
in salvos at incoming targets which arrive at random times with average
rate X. We are given also an upper limit T on the amount of time we
can operate. Each missile has the probability p of killing a target.
What is the best way to allocate our missiles so as to maximize the
expected number of targets killed?

Instead of thinking in terms of fixed N and T, let us use arbitrary
n and t, and define

fn(t) expected number of targets killed in the time
interval [0, t] if we have n missiles at time

t = 0, and we function optimally.

(Of course, fn(t) depends also on p and X.) It is clear that fn(O) =,

and f (t) is an increasing function of n and of t. Furthermore, if

0< tn1 < t, then our optimal policy in the interval (0, t), given n

missiles at the beginning, must also be optimal in the interval (tl, t),

given n - nI missiles at t1, if nI missiles were fired in (0, t).

Here, nI is a random variable depending on how many targets arrived

in (0, tl).

2
Now let tI = At be small. Then, neglecting terms in At and

higher order terms, there will be no target arrivals in (0, At) with
probability 1 - XAt, and exactly one arrival with probability XAt.
If we fire j missiles at the one target, our expected return from this

salvo will be 1 - qJ, where q = 1 - p. Our expected return in (0, t)
is therefore

(1 - At) f n(t - At) + XAt[1 - qJ + fn-j(t - At)].

Evidently j must be such that this expression is as large as possible.
Furthermore, it can never pay to decline to fire any missiles at a
target opportunity (if a bird in hand is worth two in the bush how
much better a bird in hand must be compared to one in the bush). It
follows that J 2 1, and
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fn(t) = (i - XAt) fn(t - At)

+ XAt max [l - qJ + fn-j(t -At)]

Consequently,

fn(t) - fn(t - At)

At n _x fn(t - At)

+ X max [1- qJ + f n_(t -At)], (1)
l:5j~gn ni

and if we let At--0, we obtain, formally,

f'(t) + X fn(t) = X max [1 - q + f (t)],
n nDýJ:5n n-j

or

d (eXt fn(t)) = X e t max [i - qJ + f (t)]. (2)

(We can prove (2) rigorously as follows. fn W is a monotone function

of t for each n. Therefore it is continuous almost everywhere and
differentiable almost everywhere. Consequently (2) holds almost every-
where. Since fn(t) < n, the right side of (1) is a bounded function

of t, and since (1) holds for all t--except for terms of order At--it
follows that f n(t) is absolutely continuous, etc.)

nnFrom (2), we can calculate fn(t) recursively. In fact, we have

evidently
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f(t) =0
V0

for all t. Therefore, frcm (2),

-d ,t X t

dt (elt fl(t)) = xettl ( q) -- p X e

or

fl(t) = p(1 e'k) 3

For n = 2, we have

xt
(e t f2(t)) X e mxt { +p(le e"t

-q2

But the maximum on the right side is the function

-- 1 - q 2if t < log ,

=p(2-e t) if t> 10og 2 .

Consequently

f (t) (l - q2)(1 - e if t < 1og-,
2 p

2p - e'xt[3p - p 2 + pt p log 1] (4)

if t a log .
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In addition, we see that for n = 2, we must fire two missiles at the
first target if the time remaining after its arrival is less than

log 1, and we fire one missile at the first target in the contraryx p
case, i.e., if the time remaining after the first arrival exceeds
Slog -

P*

In general, when fl(t), ... , fn-l(t) are known for all t, we can

calculate the right side of (2) for all t, integrate, and get fn(t).

This is not easy to do analytically (already for n = 3, a transcen-
dental equation is encountered), but it is perfectly feasible on a
computer. (The parameter X does not add any complexity, of course.
By changing the unit of time, we can suppose that X = 1.)

Once we have fn(t) for 0 • t < T, and 1 s n < N, we also have
n (n)

the required optimal firing schedule. In fact, let a be the value

of t for which

-qn-j + f (t)= 1-q-+ f(t),

j =1, 2, ... , n - 1. Then 0 < a (n)< a (n) < a(n) and if we
1 2 n-l'

have n missiles, then on the arrival of the first target, we must fire
j missiles if the time remaining after this arrival is in the time
interval

(a(n) a(n)
n-j I n-j+l )'

in which we interpret a (n) . 0, a(n) =+ .
0 n

This follows, of course, from the discussion preceding (1). After we
have fired the j missiles, we have n - j left, and we employ the same
philosophy when the second target arrives (given n - j missiles, this
time), etc.
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It follows from the above, and it is also intuitively clear, that
if we have a long time to operate, we should fire one missile at the
first target, one at the second, etc. Our return will be np, if we
have n missiles to start with. Therefore,

lim fn(t) = nP (5)
t --.t

(cf. (3) and (4)).

Suppose p = 1. Then the optimal policy is to fire one missile
at each target. If, in the interval (0, t), there are exactly v tar-
get arrivals, our return will be

= v, if v - n,

=n if v>n.

-Xt (xt)V
The probability of exactly v arrivals in (0, t) is e 't- v ,

1, 2, .... Therefore we have, for p = 1,

n

f(t) v eXt (Xt)V

v=O

+ -Xt (Xt)V+ L ne V!

v=n+l

or

-t - (Xt)V (tnl
fn(t) =n + e" (Xt - n) 2 )' - nl

V=O

(p - 1).
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The most important part of our problem is the determination of
rn)

the "cross-over" times a defined above, in terms of which the
(n)

optimal firing policy is given. For fixed n, the a are bunched

up near t = 0 for the first few J's. For small t, we have

-xt)
fn(t) = (1 _ q n)(1 _ e , (6)

and the smaller n is, the larger will be the interval (0, a(n)) in

which (6) is valid. Now a1n) is the value of t for which

Sn q n-+ f(t)= 1  qn-l + p( Xt
-n=1 1 pfl

Therefore

(n) 1 n-l
a -l log (1- q ()

Similrly, n)

similarly, a is the value of t for which

- n-j+l + fJ-l(t) = 1 _ qn-i + f ..(t) ,

which becomes, using (6)--valid for small n and small t--

q n-Jp= q J-p(l - e -),

or

(n) lo (1 _ n-2 J+l) n.(8ajn = - -- log (i - qn 2 ~),J < < n. (8)

For large n, with j < < n, this is practically
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I

(~n) 1 qn-Pji-

Fbr J nearly equal to n, the most interesting case, we have not been
able to derive approximate values.

I.


